Рейтинг
10.34
голосов: 9

О блоге

Теория работы цепей, элементов. Методики расчета цепей. Выбор элементов и измерение параметров.

Администраторы (1)

Модераторы (0)

Модераторов здесь не замечено

Читатели (97)

Melted_Metal _YS_ Tabke XANDER WildCat kest Vga Alatar mzw kalvenolt Reverb grand1987 DrGenius kvm labor neiver Leopoldius rumkin LuckyLex akaChewy

Все читатели блога

Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи 9

Схема мониторинга аккумулятора с высокой токовой нагрузкой: 0…10 A, 0…10 кГц, 18 бит
Исходные данные к данной схеме представлены в таблицах 35 и 36.



▌Описание схемы
Данная схема с однополярным питанием способна измерять ток, протекающий через токоизмерительный резистор, в диапазоне ±50 Ма…±10 A (рисунок 46). Усилитель тока позволяет работать со входными синфазными напряжениями 0…75 В. Дифференциальный усилитель преобразует входной однополярный сигнал в выходной дифференциальный ±5 В. Дифференциальный сигнал поступает на АЦП последовательного приближения с частотой выборки до 1 MSPS. Изменяя номиналы компонентов, можно влиять на величину дифференциальных токов. Данная схема используется в различных приложениях, требующих точных измерений, в том числе – в системах мониторинга аккумуляторов, в тестовом оборудовании и в радиопередатчиках базовых станций.



▌Характеристики
Частотные и шумовые параметры схемы представлены в таблице 37.




Читать дальше

Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи 8

Входной узел для обработки сигналов с большими значениями синфазной и дифференциальной составляющих



▌Описание схемы
Такие устройства, как, например, многофункциональные реле, датчики напряжения промышленной сети или системы управления железнодорожного транспорта, как правило, работают с дифференциальными сигналами, амплитуда и абсолютный (относительно общего провода) потенциал которых значительно превосходят диапазон рабочих напряжений АЦП. В этой главе приведен один из вариантов реализации узла, позволяющего оцифровывать подобные сигналы с помощью обычного АЦП последовательного приближения. В предлагаемой схеме (рисунок 39) прецизионный операционный усилитель осуществляет согласование высокоуровневого входного дифференциального сигнала со входом АЦП, причем коэффициент передачи узла на ОУ рассчитан таким образом, чтобы амплитуда сигнала на входе АЦП находилась в пределах ±10 В.


рис. 39
Исходные данные для расчета данной схемы приведены в таблицах 31 и 32, а технические характеристики – в таблице 33. При необходимости параметры элементов могут быть скорректированы под конкретные значения амплитуд синфазной и дифференциальной составляющих входного сигнала, а также – с учетом требований к динамическим характеристикам, частотному диапазону и прочим особенностям конкретного приложения.



Читать дальше

Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи 7

В данной главе описывается, как расширить диапазон входных напряжений SAR АЦП со встроенным аналоговым входным блоком (AFE) и снизить потери точности за счет применения метода двухточечной калибровки.



Схема представленная на рисунке:



расширяет доступный диапазон входных напряжений ADS8598H с собственным диапазоном ±10…± 40 В (таблица 27).



Это позволяет использовать более широкий входной диапазон напряжений без применения дополнительной аналоговой схемы понижения напряжения; вместо этого используется простой делитель напряжения для взаимодействия с AFE АЦП, понижающий напряжение на входе преобразователя. Для устранения возможных ошибок применяется соответствующий метод калибровки.

Также рекомендуем обратиться к статье «Уменьшение влияния внешнего RC-фильтра на погрешности усиления и дрейфа для интегрированного AFE» («Reducing effects of external RC filter circuit on gain and drift error for integrated analog front ends (AFEs): ±10V»), где представлена аналогичная конфигурация с разъяснениями, как оценить вклад дрейфа от внешних компонентов. Расширение диапазона входных напряжений АЦП оказывается полезным в задачах разработки конечного оборудования, включая многофункциональные реле, модули аналоговых сигналов переменного тока и блоки управления для железнодорожного транспорта.

Рекомендуем обратить внимание:
  • Используйте резисторы с малым дрейфом, чтобы снизить ошибки, вызванные температурным дрейфом, например, 50 ppm/°C с допуском 1% или выше. Обратите внимание, что стоимость высокоомных (от 1 Мом и выше) прецизионных резисторов с малым дрейфом может быть сравнительно высокой.
  • Для подобной конфигурации может понадобиться входной фильтр. Установка такого фильтра сразу после мощного входного сопротивления может привести к ошибкам из-за токов утечки конденсатора. Альтернативная схема с фильтрующим конденсатором на входе приведена далее.


Выбор компонентов

Внутреннее сопротивление преобразователя составляет 1 Мом, внешний резистор выбирается на основе требуемого расширенного диапазона входных напряжения (Vin), в данном случае это ±40 В. Такой внешний резистор образует входной делитель напряжения с внутренним сопротивлением устройства, понижая входное напряжение в пределах диапазона входного сигнала АЦП ±10 В.

Преобразуем уравнение делителя напряжения, чтобы найти значение для внешнего резистора. Эта же формула 1 может далее использоваться для расчета ожидаемого значения VinADC из входного напряжения:

Решаем уравнение, находя значение внешнего резистора для желаемого расширенного диапазона входного напряжения. Vin = ±40 В, Rin = 1 МоМ (формула 2):



Ширина входного диапазона напряжений может принимать различные значения, в зависимости от используемого значения внешнего резистора (таблица 28).



Далее в статье некалиброванные измерения и расчет процентной точности, затем двухточечная калибровка с измерением параметров, а также ряд альтернативных схем и их расчет.

Оценка эффективности теплоотводов для микросхем на примере Orange Pi Zero

        Начиная с недавнего времени, в интернет-магазинах стали появляться керамические радиаторы, которые, по заявлению продавца, эффективнее на 800% (!) чем алюминиевые или медные. Конечно, цифры очень сомнительные, но я решил заказать и проверить, сравнив их с другими теплоотводами.


Читать дальше

Схема преобразователя несимметричного сигнала в дифференциальный с использованием дифференциального усилителя

Перевод глав руководства по АЦП от Texas Instruments. Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи (впервые на русском языке).


Рисунок 23.



Описание решения
Схема, приведенная на рисунке 23, демонстрирует возможности управления дифференциальным АЦП c преобразованием биполярного несимметричного сигнала в однополярный полностью дифференциальный сигнал (для получения дополнительной информации об этих и других типах сигналов, обратитесь к обучающим материалам TI PrecisionLabs, раздел «Типы входных сигналов SAR АЦП»). По сравнению с несимметричными моделями, полностью дифференциальный АЦП имеет вдвое больший динамический диапазон, что улучшает характеристики преобразователя по переменному току. Многие системы, например, эхолоты, расходомеры и системы управления двигателями, выигрывают от более высокой производительности дифференциального АЦП. В зависимости от конкретных спецификаций и требований конечной системы, соответствующие формулы расчетов и алгоритм выбора компонентов для данной схемы могут варьироваться. Для получения дополнительной информации о подобных схемах, работающих с однополярным входным сигналом, читайте статью «Преобразование несимметричного сигнала в дифференциальный для однополярных сигналов».


Читать дальше

Цепь контроля высоковольтной аккумуляторной батареи на основе 18-разрядного дифференциального АЦП

Перевод глав руководства по АЦП от Texas Instruments. Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи (впервые на русском языке).

Исходные данные к описываемому решению представлены в таблицах 13 и 14


Описание решения
Данная схема (рисунок 16) передает входной биполярный сигнал ±20 В на дифференциальный вход полностью дифференциального АЦП в диапазоне ±4,8 В, что находится в пределах линейного диапазона усилителей. Значения в разделе выбора компонентов могут быть скорректированы с учетом различных уровней входного напряжения.



Данная реализация схемы применима в устройствах точного измерения напряжения, таких как анализаторы аккумуляторных батарей, оборудование для тестирования аккумуляторов, ATE и выносные радиоблоки (RRU) в беспроводных базовых станциях.

Таблица 15. Спецификации упрощенной версии схемы контроля


Рекомендуем обратить внимание
  1. Определите линейный диапазон операционного усилителя на основе характеристик синфазного сигнала, размаха выходного напряжения и линейного коэффициента усиления напряжения. Это описано в разделе выбора компонентов.
  2. В качестве конденсаторов на пути прохождения измерительного сигнала используйте конденсаторы COG для минимизации искажений. В данном примере конденсаторы Cf1, Cf2, Cf3, Cf4, Cfilt1 и Cfilt2 должны быть типа COG.
  3. Используйте пленочные резисторы 0,1% 20ppm/°C или выше для снижения дрейфа коэффициента усиления и для минимизации искажений.
  4. Серия видеороликов от PrecisionLabs посвящена методам анализа ошибок. Рекомендуем ознакомиться с видео “Statistics Behind Error Analysis”, чтобы узнать, как минимизировать ошибки усиления, смещения, дрейфа усиления и улучшить шумовые характеристики.
  5. Серия обучающих видеороликов “TI Precision Labs – ADCs” посвящена методам выбора элементов для цепи фильтра Rfilt и Cfilt. Данные параметры компонентов зависят от полосы пропускания усилителя, частоты дискретизации преобразователя данных и конструкции самого преобразователя. Приведенные здесь значения позволяют получить хорошие показатели установления сигнала и динамические характеристики для выбранных моделей усилителя и АЦП. В случае изменения дизайна выберите другой RC-фильтр. Ознакомьтесь с обучающим видео «Введение в выбор компонентов для входных каскадов SAR АЦП», в котором представлена дополнительная информация по выбору RC-фильтра для получения наилучших характеристик по установлению сигнала и переменному току.


Выбор компонентов, формулы расчета, передаточные характеристики.

Новые методы уменьшения дрейфа нуля в малошумящих АЦП Texas Instruments


Двухступенчатая стабилизация прерыванием в выпущенных компанией Texas Instruments новых АЦП ADS1235 позволяет снизить до минимума долговременный и температурный дрейфы напряжения смещения и достичь высокой точности в измерительных цепях современных прецизионных цифровых приборов и универсальных аналоговых каналов.

Доказывать высокую точность дифференциальных методов измерений уже давно нет необходимости, поскольку это подтверждено десятилетиями практической эксплуатации многих поколений самого разнообразного метрологического оборудования. Действительно, переход от определения абсолютной величины контролируемого параметра к измерению разницы между действительным и эталонным значениями позволяет проводить измерения с точностью, ограниченной на практике лишь техническими возможностями существующей элементной базы.

Главной отличительной особенностью дифференциальных датчиков, например, на основе мостов Уитстона, является малая величина выходного напряжения, которая при полном уравновешивании измерительного контура равна нулю. Таким образом, чем меньше уровень сигнала, который может быть отслежен узлом обработки сигнала, тем лучше можно сбалансировать измерительную систему, следовательно, тем более высокий класс точности будет иметь прибор. Однако при измерении слабых дифференциальных сигналов возникает ряд проблем, главная из которых – наличие напряжения смещения (Offset Voltage – дифференциальное напряжение на входе, при котором выходное напряжение равно нулю). Добавляясь к полезному сигналу, напряжение смещения ограничивает его минимально различимое значение и, следовательно, снижает точность проведения измерений (рисунок 1).

Рис. 1. Влияние напряжение смещения на уровень выходного сигнала

Причиной появления напряжения смещения в первую очередь является несовершенство элементной базы, особенно полупроводниковых компонентов. При дальнейшем уменьшении уровня рабочих напряжений количество факторов, влияющих на величину этого параметра, становится настолько большим, что уже с трудом поддается анализу, а тем более контролю. Так, например, при работе с сигналами меньше 1 мВ на точность измерений может повлиять даже «неправильный» винт в клеммной колодке для подключения датчика, который вместе с «неправильным» проводом создаст условия для появления термо-ЭДС в месте контакта двух разнородных проводников.


Читать дальше

Способ прямого согласования входа АЦП (SAR) без буферного усилителя

Перевод глав руководства по АЦП от Texas Instruments. Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи. (впервые на русском языке.).

Схема сопряжения выходов датчиков напрямую со входом АЦП последовательного приближения (SAR). В таких устройствах как датчики параметров окружающей среды, газовые детекторы, детекторы дыма или пожара входной сигнал изменяется очень медленно, и выходное напряжение датчика сэмплируется на довольно медленных скоростях (около 10 кГц). В подобных системах выход датчика может быть непосредственно сопряжен со входом SAR АЦП без использования промежуточного предусилителя, что позволит добиться уменьшения размеров устройства и снизить его стоимость.

Сопряжение выхода датчика напрямую с SAR АЦП
На рисунке ниже показана типичная схема сопряжения датчика непосредственно со входом SAR АЦП без использования предусилителя. Блок «Датчик» представляет собой схему Тевенина, эквивалентную выходу датчика. Источник напряжения VTH — это напряжение эквивалентной схемы, а внутреннее сопротивление генератора RTH — импеданс эквивалентной схемы. Документация большинства типов датчиков содержит модель Тевенина, из которой можно легко вычислить значение импеданса серии.



Рекомендуем обратить внимание:
— Определите импеданс источника для входного сигнала. Вычислите постоянную времени RC-цепи импеданса источника входного сигнала и фильтрующего конденсатора (известное значение).
— Определите минимальное время захвата, необходимое для того чтобы входной сигнал установился для заданной комбинации импеданса источника и фильтрующего конденсатора.Используйте конденсаторы COG для минимизации искажений.
— Используйте пленочные резисторы 0,1% 20 ppm/°C или резисторы с еще лучшими характеристиками для снижения дрейфа коэффициента усиления и минимизации искажений.

Выбор компонентов для формирования входного сигнала АЦП

Расчет и моделирование дифференциатора

Cхема дифференциатора выполняет дифференцирование входного сигнала в частотном диапазоне, определяемом постоянной времени и шириной полосы пропускания ОУ (см.рисунок).



Входной сигнал подается на инвертирующий вход, поэтому выходной сигнал имеет обратную полярность. Идеальная схема дифференциатора является принципиально нестабильной и требует дополнительного входного резистора, конденсатора в цепи обратной связи или и того, и другого одновременно. Компоненты, обеспечивающие стабильность схемы, приводят к ограничению рабочего частотного диапазона.

Рекомендуем обратить внимание:
  • Чтобы использовать конденсатор С1 меньшей емкости, следует выбирать резистор R2 с большим номиналом;
  • Для фильтрации ВЧ-шумов можно подключить дополнительный конденсатор параллельно с резистором R. При этом конденсатор уменьшит диапазон рабочих частот в 3,5 раза (половина декады) по сравнению с полосой пропускания ОУ;
  • Регулируемый источник опорного напряжения может быть подключен к неинвертирующему входу операционного усилителя. Это позволит схеме работать с однополярным питанием. Опорное напряжение может быть получено с помощью делителя напряжения;
  • Для уменьшения искажений следует работать в линейном рабочем диапазоне напряжений ОУ. Этот диапазон обычно определяется в схеме с разомкнутой обратной связью (AOL).

Расчет и моделирование схемы>>
  • 0
  • 27 декабря 2018, 18:51
  • DIHALT

Среднечастотный частотомер на AVR. Часть 3, + милливольтметр.

  Это продолжение предыдущих частей "Часть1, динамическая индикация" и "Часть2, статическая индикация".
  В первой части я посетовал, что в ATmega8A при занятой памяти менее 10% почти не осталось свободных ножек. Во второй части я эту проблему решил с помощью внешнего контроллера дисплея. Осталось придумать, куда использовать освободившиеся ножки и неиспользованную память.
  Для измерительного генератора эти ресурсы могут быть применены при осовременивании схемы. Например замены переменного резистора настройки на инкрементальный энкодер, замены механических переключателей на управление реле или бесконтактными ключами и т.д. Это все индивидуально для каждой схемы. Но как правило измерительный генератор имеет регулируемый по напряжению выход. Контролировать уровень напряжения на нем также желательно. А у нас как раз остались незадействованными 6 каналов ADC (для PDIP, в корпусе TQFP их 8). Поэтому введем в программу второй канал измерения, измерять будем напряжение на входе ADC.


Читать дальше