Модуль Zigbee UART DL-20


Я не видел никаких статей на такой модуль, поэтому решил исправить этот пробел.

Читать дальше

Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи 8

Входной узел для обработки сигналов с большими значениями синфазной и дифференциальной составляющих



▌Описание схемы
Такие устройства, как, например, многофункциональные реле, датчики напряжения промышленной сети или системы управления железнодорожного транспорта, как правило, работают с дифференциальными сигналами, амплитуда и абсолютный (относительно общего провода) потенциал которых значительно превосходят диапазон рабочих напряжений АЦП. В этой главе приведен один из вариантов реализации узла, позволяющего оцифровывать подобные сигналы с помощью обычного АЦП последовательного приближения. В предлагаемой схеме (рисунок 39) прецизионный операционный усилитель осуществляет согласование высокоуровневого входного дифференциального сигнала со входом АЦП, причем коэффициент передачи узла на ОУ рассчитан таким образом, чтобы амплитуда сигнала на входе АЦП находилась в пределах ±10 В.


рис. 39
Исходные данные для расчета данной схемы приведены в таблицах 31 и 32, а технические характеристики – в таблице 33. При необходимости параметры элементов могут быть скорректированы под конкретные значения амплитуд синфазной и дифференциальной составляющих входного сигнала, а также – с учетом требований к динамическим характеристикам, частотному диапазону и прочим особенностям конкретного приложения.



Читать дальше

Линейка для разметки.

Недавно на одном интернет ресурсе, связанном со стендовым судомоделизмом наткнулся на одну интересную линейку. Впоследствии как выяснил, линейка напрямую предназначена для разметки, хотя никто не запрещает проводить и измерения.


Читать дальше

SI7021 и asm

AVR
Всем добра!
Долго у меня руки не доходили закончить этот проект. Много видел всяких библиотек, но проект задумывался на asm, был отложен на год или два. И вот руки дошли его закончить.
Работать на asm c этим датчиком никаких сложностей нет. Всё, что не поддерживается набором команд AVR, было отброшено за ненадобностью.
В итоге, что получилось, можно посмотреть в приложенных файлах. Я не делал перевод температуры в BCD, т.к. в моём проекте это не требуется.
Ну и несколько коротеньких функций в качестве бонуса:

Такое я использовал в программах МЕНЮ или если что-то уже получаешь в ASCII

                Ld       temp,Y		;* Берем  цифру в BCD 
                subi	temp,(-0x67)    ;* Переводим в HEX, сразу добавляем (1)
                brhc    ADD_6	  	;* Проверяем младшую тетраду на ноль
Sub_66:
                subi     temp,0x66      ;* И обратно в BCD
ADD_6:
                subi	temp,-6         ;- Если в младшей тетраде (0) добавл. (6)
                rjmp    Sub_66

Это функция поиска кнопки, при использовании ADC

KNOB:
		cbi	Flags,fl_Key_CODE  ;= Сбрасываем флаг кода, что-то там ADC насчитало
		ldi	temp1,0x20	   ;= Загружаем регистр для сдвига (1) (0010 0000)
		ldwi	Z,TAB_KEY*2	   ;= и он же счетчик обработанных  кнопок
NEW_KEY_VALUE:
		lpm	temp,Z+	           ;= извлекаем максимально возможный код кнопки из таблицы.
                ldi	count,3		   ;= На это число, в итоге, уменьшим код , чтобы определить кнопку т.к. значение может отличаться         
                (+/-) 1 от табличного.
CheckTabADC:		
		cp	CODE_KEY,temp	   ;= Сравниваем полученное с данными в таблице
		breq	EXIT_KNOB	   ;+ Равны - уходим 
		dec	temp		   ;= Вычитаем из полученного кода (1) 
		dec	count		   ;= Соответственно и уменьшаем счётчик возможностей
		brne	CheckTabADC	   ;= И снова проверяем. ;= Достанем следующий код кнопки , для проверки с полученным, при этом передвинув
		lsr	temp1		   ;= флажок , указывающий какой код кнопки мы будем обрабатывать ;= В итоге temp1 всегда ==0x01, что соответствует коду 0xFF - не нажата.
;| 0x02 - SW5, 0x04 - SW4,0x08 - SW3, 0x10 - SW2, 0x20 - SW1
		brne	NEW_KEY_VALUE
;		nop	;= а сюда все равно не попадём никогда , так что похрен;= что тут можно понаписать
EXIT_KNOB:
		mov	Flags_KEY,temp1	    ;= Переносим в регистр флагов
		ret

Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи 7

В данной главе описывается, как расширить диапазон входных напряжений SAR АЦП со встроенным аналоговым входным блоком (AFE) и снизить потери точности за счет применения метода двухточечной калибровки.



Схема представленная на рисунке:



расширяет доступный диапазон входных напряжений ADS8598H с собственным диапазоном ±10…± 40 В (таблица 27).



Это позволяет использовать более широкий входной диапазон напряжений без применения дополнительной аналоговой схемы понижения напряжения; вместо этого используется простой делитель напряжения для взаимодействия с AFE АЦП, понижающий напряжение на входе преобразователя. Для устранения возможных ошибок применяется соответствующий метод калибровки.

Также рекомендуем обратиться к статье «Уменьшение влияния внешнего RC-фильтра на погрешности усиления и дрейфа для интегрированного AFE» («Reducing effects of external RC filter circuit on gain and drift error for integrated analog front ends (AFEs): ±10V»), где представлена аналогичная конфигурация с разъяснениями, как оценить вклад дрейфа от внешних компонентов. Расширение диапазона входных напряжений АЦП оказывается полезным в задачах разработки конечного оборудования, включая многофункциональные реле, модули аналоговых сигналов переменного тока и блоки управления для железнодорожного транспорта.

Рекомендуем обратить внимание:
  • Используйте резисторы с малым дрейфом, чтобы снизить ошибки, вызванные температурным дрейфом, например, 50 ppm/°C с допуском 1% или выше. Обратите внимание, что стоимость высокоомных (от 1 Мом и выше) прецизионных резисторов с малым дрейфом может быть сравнительно высокой.
  • Для подобной конфигурации может понадобиться входной фильтр. Установка такого фильтра сразу после мощного входного сопротивления может привести к ошибкам из-за токов утечки конденсатора. Альтернативная схема с фильтрующим конденсатором на входе приведена далее.


Выбор компонентов

Внутреннее сопротивление преобразователя составляет 1 Мом, внешний резистор выбирается на основе требуемого расширенного диапазона входных напряжения (Vin), в данном случае это ±40 В. Такой внешний резистор образует входной делитель напряжения с внутренним сопротивлением устройства, понижая входное напряжение в пределах диапазона входного сигнала АЦП ±10 В.

Преобразуем уравнение делителя напряжения, чтобы найти значение для внешнего резистора. Эта же формула 1 может далее использоваться для расчета ожидаемого значения VinADC из входного напряжения:

Решаем уравнение, находя значение внешнего резистора для желаемого расширенного диапазона входного напряжения. Vin = ±40 В, Rin = 1 МоМ (формула 2):



Ширина входного диапазона напряжений может принимать различные значения, в зависимости от используемого значения внешнего резистора (таблица 28).



Далее в статье некалиброванные измерения и расчет процентной точности, затем двухточечная калибровка с измерением параметров, а также ряд альтернативных схем и их расчет.

LT3437, взываю к коллективному разуму!

Запись — вопрос. Поступила в ремонт некоторая железяка, с диагнозом «не включается». Питается железяка от 10-30 Вольт. После попадания внутрь 10-30 Вольт потребляются, среди прочего, понижающим DC-DC конвертером LT3437EFE, чья задача — сформировать 3.3В для питания контроллера, который, подумав и всё взвесив заводит уже более мощный DC-DC на 12В 5А для остальной железяки. Осмотр, с участием цешки показал, что 3.3В на плате отсутствуют. Питание на LT3437 приходит, а на выходе конвертера — 0.4В. Схема включения конвертера, насколько я могу судить — по даташиту. Вот она:





Читать дальше

Вебинар «Литиевые ХИТы FANSO или что нужно знать инженеру о батарейках» (20.06.2019)

Компания Компэл приглашает вас принять участие в вебинаре, посвященном литиевым батарейкам FANSO.



На вебинаре будет рассказано о параметрах батареек, их зависимости от режима работы и эксплуатации. Будет дана информация о том, на какие параметры следует обращать внимание, выбирая литиевый ХИТ, и как избежать некоторых проблем.

Данное мероприятие будет интересно инженерам-разработчикам, производителям электронных изделий, представителям отдела закупок.

Содержание

  • Почему именно литиевые батарейки?
  • Основные типы и виды литиевых батареек.
  • Производитель FANSO и его продукция. Почему именно FANSO?
  • Параметры литиевых ХИТ, зависимость параметров от режима работы и условий эксплуатации.
  • Пассивация/депассивация. Как снизить последствия пассивации? Эффективность использования батареи.
  • Что даёт связка ХИТ и суперконденсатора?
  • На что обратить внимание при выборе литиевого ХИТ?


Общая информация
Начало: 20 июня 2019 г. в 11:00
Продолжительность: 60 минут
Форма участия: бесплатно, но нужна предварительная регистрация

Регистрация

Работаем с микроконтроллерами STM32F7. Тренинг по STM32F7 от компании STMicroelectronics. Впервые на русском языке

Данная серия публикаций основана на материалах цикла STM32F7 Online Training от компании STMicroelectronics. В статьях представлено описание функциональных блоков и инструментов разработки для семейства микроконтроллеров STM32F7.

Логически материал разбит на 4 главы, охватывающие тематику системной периферии, памяти, безопасности, аналоговой периферии, цифровой периферии, таймеров, экосистемы. Главы не связаны между собой, и читатель может ознакомиться с ними в произвольном порядке:

Часть 1. Системная периферия. Есть описание линейки семейства, с характеристиками каждого чипа. А также расписано устройство контроллера. Ядро, Матрица соединений, контроллеры DMA, прерываний, питания, сброса и тактирования, порты ввода вывода, отладки и прочие. Все очень кратко, в обзорном режиме, но дает наглядное понимание, что там вообще есть и как это использовать.

Часть 2. Память и функции безопасности. Во второй части довольно подробно расписано как общаться с внутренней Flash памятью, как подключить внешнюю память, как управляться с контроллером внешней памяти. Расписана работа Quad SPI контроллера, необходимого для подключения памяти по SPI шине, а также вспомогательных блоков, таких как блок вычисления CRC, Хэшпроцессор, ускоритель шифрования AES и генератор случайных чисел. Описаны способы защиты памяти и механизмы обеспечивающие безопасную работу.

Часть 3. Периферия и таймеры. Довольно подробно расписано про АЦП, ЦАП, CAN, DCMI (интерфейс цифровой камеры), Дельта сигма модулятор, интерфейс DSIHOST — для работы с TFT дисплеями и LTDC контроллер (управление дисплеем по RGB), JPEG-кодек, Ethernet, HDMI, I2C, SPI, USART, USB, SDMMC, SAI и SPDIFRX аудио интерфейсы. Очень жирная глава.

Часть 4. Экосистема. Тут про Cube и отладочные платы под этот процессор.

stm8l программный IIC (I2C)

Часто возникает необходимость подключить к микроконтроллеру какой-нибудь датчик по протоколу I2C. Для этого можно использовать встроенный I2C микроконтроллера или написать свой, программный. Для начала надо ознакомиться с теорией. Теория очень подробно описана тут. Ознакомившись с теорией, переходим к практике. Для микроконтроллера STM8L152C6T6 напишем простой пример, когда на шине находится один master. Пример будет для IAR.

Читать дальше

Реверс-инжиниринг протокола обмена в оборудовании EOS

Сразу скажу, заголовок, возможно, несколько громковат. Мне реально потребовалось выдернуть из протокола всего одну команду для управления диммером. О том, как это было сделано и что получилось в итоге, читайте дальше в статье.


Читать дальше
  • +5
  • 29 мая 2019, 09:20
  • FDA