Вебинар «Решение Bourns по комплексной защите интерфейса RS-485 на базе TBU (Transient Blocking Unit)» (24.04.2019)

Компания Компэл приглашает вас принять участие в вебинаре, посвященном вопросам защиты от импульсных перенапряжений и токовых перегрузок одного из самых популярных и востребованных промышленных интерфейсов: RS-485.



Данный вебинар будет интересен инженерам-конструкторам и схемотехникам, разрабатывающим программируемые логические контроллеры (ПЛК), узлы систем сбора и передачи данных (УСПД) и прочие изделия автоматики, использующие для передачи данных физический интерфейс RS-485 и протоколы Modbus и Profibus.

На вебинаре будет подробно рассказано о специализированных компонентах TBU (Transient Blocking Unit) от компании Bourns, их функционировании и правильном использовании.

Содержание
  • Обзор основных источников импульсных перенапряжений
  • Нюансы и особенности построения каскадной защиты
  • Обзор компонентов TBU: параметры, характеристики, принцип работы
  • Одноканальные TBU-CA и новые двухканальные TBU-DF
  • Подбор первичных и вторичных защитных компонентов по напряжению
  • Fast acting GDT – специальные, оптимизированные газоразрядники для TBU
  • Графики и осциллограммы работы TBU
  • Реакция TBU на входной импульс и функция AC Power Cross
  • Пример схемотехники и трассировки печатной платы на примере отладок Bourns
  • Texas Instruments и Bourns: совместные испытания рассматриваемого решения в лаборатории

Вопросы и ответы по вебинару. Дополнительные материалы

Эксперименты с Nb-IoT (LTE-NB). Прием и детектирование сигнала NPSS при помощи SDR HackRF.

В последнее время много разговоров на тему «интернет вещей» и связанных с этим технологий.
Одна из таких технологий — Nb-IoT, или Narrow-band Internet of Things.
Технология является подмножеством LTE, ну или в некотором смысле его упрощением.

Более подробную информацию можно найти в интернетах, в данной статье я расскажу о своих небольших экспериментах с реальным сигналом, принятым с ближайшей базовой станции и поделюсь результатами в виде картинок и моим комментариям к ним.
Данные эксперименты — это плод моей любознательности и желания изучать новое, чем я с вами и делюсь.

В Nb-IoT, как и в LTE, используется ODFM для Downlink и SC-FDMA для Uplink. Но об этом чуть позже. Сначала давайте разберемся, где вообще искать этот сигнал и как он может выглядеть.
Для приема сигнала я использовал HackRF, которую мне одолжил один хороший человек.



Для начала, погуглим и выясним, на каких вообще частотах работает этот самый Nb-IoT у нас в стране.




Читать дальше
  • +6
  • 17 апреля 2019, 17:30
  • Ezhik

Вебинар «Прецизионные сигма-дельта АЦП Texas Instruments»

Аналого-цифровой преобразователь – ключевой элемент аналогового тракта любого измерительного прибора. От его характеристик критически зависит качество измерений. Компанией Texas Instruments накоплен огромный опыт разработки, производства и применения самых современных АЦП.



Частицей этого опыта с участниками вебинара поделится один из ведущих разработчиков прецизионных аналого-цифровых сигма-дельта преобразователей Шридар Мор. В ходе вебинара Шридар кратко расскажет, как работает Δ-Σ АЦП, затронет основные проблемы, с которыми сталкиваются разработчики измерительных систем, а также разберет некоторые примеры разработки устройств с применением новейших АЦП Texas Instruments.

Содержание
  • Принципы работы Δ-Σ АЦП;
  • Линейка Δ-Σ АЦП Texas Instruments;
  • Оптимизация схемотехнического решения измерительной системы при помощи высокоинтегрированных АЦП ADS122U04;
  • Разработка прецизионных и точных измерительных систем на основе АЦП ADS1262;
  • Построение измерительных систем на основе резистивных мостовых схем;
  • Интегрированные функции диагностики и мониторинга состояния АЦП на примере ADS124S08.

Ссылка на доп материалы
  • +2
  • 11 апреля 2019, 17:39
  • DIHALT

AtMega1284p/644p и W5500 Ethernet

AVR

Множество тестовых примеров использующих ATMEGA 1284p/644p и Ethernet контроллер W5500.

Собственно выкладываю ссылку на «распатроненный» мной Ethernet-стек для дешевого Ethernet контроллера на Wiznet 5500 SPI: m1284p_wiz5500
Основано на примерах для W5500 EVB (LCP13xx + W5500). Не Arduino С-код, довольно серьезно модифицировано(по причинам различий в архитектуре процессоров ARM и AtMega, a также немалого количества багов в коде приложений для W5500 EVB). Собиралось при помощи Eclipse Kepler с плагином AVR-Eclipse и тулчейном avr-gcc 4.9.2 (посредством самописного Makefile, думаю тоже соберется при желании).


Читать дальше

Печатная плата под AtMega 8535/16/32/644/1284

AVR
Мой вариант печатной платы под AtMEGA 16/32/644/1284 (TQFP-44 0.8mm).
Оригинал разводился еще в древнем Eagle 5.6.0.
Было интересно, получится ли провести экспорт в KiCad 5.xx.
И да — все прошло на удивление гладко, герберы успешно сгенерированы, и приняты на производство PCBWAY.


Читать дальше

STM8L Компараторы: часть2 COMP2 и оконный режим

В первой части мы рассмотрели COMP1. Теперь займёмся вторым компаратором COMP2 и задействуем оконный режим. Работать будем с микроконтроллером STM8L152C6T6, который установлен на плате STM8L-DISCOVERY. STM8L152C6T6 относится к классу medium. Для работы с компараторами возьмём делитель напряжения из первой части, только переделаем его так, чтобы он давал напряжение от 0 до 1,5V.


Выход делителя теперь подключим к ножке PE5 микроконтроллера:

Читать дальше

STM8L Компараторы: часть1 COMP1

Компараторы в микроконтроллерах серии STM8L рассмотрим на примере STM8L152C6T6, который установлен на плате STM8L-DISCOVERY.

Наш STM8L152C6T6 относится к классу medium. Для начала разберёмся с подключением первого компаратора COMP1. Для иллюстрации подключения компаратора из RM0031 возьмём рисунок из раздела Routing interface (RI) для medium:


Входной сигнал мы будем подавать

Читать дальше

Новые методы уменьшения дрейфа нуля в малошумящих АЦП Texas Instruments


Двухступенчатая стабилизация прерыванием в выпущенных компанией Texas Instruments новых АЦП ADS1235 позволяет снизить до минимума долговременный и температурный дрейфы напряжения смещения и достичь высокой точности в измерительных цепях современных прецизионных цифровых приборов и универсальных аналоговых каналов.

Доказывать высокую точность дифференциальных методов измерений уже давно нет необходимости, поскольку это подтверждено десятилетиями практической эксплуатации многих поколений самого разнообразного метрологического оборудования. Действительно, переход от определения абсолютной величины контролируемого параметра к измерению разницы между действительным и эталонным значениями позволяет проводить измерения с точностью, ограниченной на практике лишь техническими возможностями существующей элементной базы.

Главной отличительной особенностью дифференциальных датчиков, например, на основе мостов Уитстона, является малая величина выходного напряжения, которая при полном уравновешивании измерительного контура равна нулю. Таким образом, чем меньше уровень сигнала, который может быть отслежен узлом обработки сигнала, тем лучше можно сбалансировать измерительную систему, следовательно, тем более высокий класс точности будет иметь прибор. Однако при измерении слабых дифференциальных сигналов возникает ряд проблем, главная из которых – наличие напряжения смещения (Offset Voltage – дифференциальное напряжение на входе, при котором выходное напряжение равно нулю). Добавляясь к полезному сигналу, напряжение смещения ограничивает его минимально различимое значение и, следовательно, снижает точность проведения измерений (рисунок 1).

Рис. 1. Влияние напряжение смещения на уровень выходного сигнала

Причиной появления напряжения смещения в первую очередь является несовершенство элементной базы, особенно полупроводниковых компонентов. При дальнейшем уменьшении уровня рабочих напряжений количество факторов, влияющих на величину этого параметра, становится настолько большим, что уже с трудом поддается анализу, а тем более контролю. Так, например, при работе с сигналами меньше 1 мВ на точность измерений может повлиять даже «неправильный» винт в клеммной колодке для подключения датчика, который вместе с «неправильным» проводом создаст условия для появления термо-ЭДС в месте контакта двух разнородных проводников.


Читать дальше

USB HID для микроконтроллеров STM32F103 без использования библиотек

Однажды озадачившись подключением микроконтроллера к ПК через USB, я обнаружил, что это непростая задача. По сравнению с USART, SPI и.т.п., программирование USB оказалось на порядок сложнее. Поиск примеров в интернете практически не дал никаких результатов. Имеющиеся примеры, как правило, основаны на использовании больших и сложных библиотек, которые очень трудно применить, а тем более модифицировать под свои нужды. Также эти примеры обычно состоят из множества файлов, так что даже понять структуру проекта, а не то что принцип работы, USB из них не представляется возможным. Есть неплохие статьи по USB, однако ответа на вопрос, как реализовать обмен данными на конкретном контроллере они не дают. В итоге пришлось самостоятельно, путем длительных экспериментов пытаться запустить USB.
Используемый контроллер STM32F103C8T6. Это наверное самый распространенный и дешевый контроллер с модулем USB. Конкретно использовалась вот такая плата:
ru.aliexpress.com/item/STM32F103C8T6-ARM-STM32-DIY-KIT/32839140960.html?spm=a2g0v.search0104.3.14.1a477b81mKd6hC&ws_ab_test=searchweb0_0%2Csearchweb201602_9_10065_10068_319_317_10696_453_10084_454_10083_10618_10307_10301_537_536_10902_10059_10884_10889_10887_321_322_10915_10103_10914_10911_10910%2Csearchweb201603_58%2CppcSwitch_0&algo_pvid=551618bd-fcbf-49a9-9147-692e88feb8ce&algo_expid=551618bd-fcbf-49a9-9147-692e88feb8ce-5
Цена такой платы практически равна цене микросхемы отдельно. Реализуемый класс устройств HID. Преимущества HID известны. Это отсутствие необходимости использования драйверов на ПК и относительная простота реализации. К недостаткам можно отнести низкую скорость передачи данных. В качестве среды программирования использован CooCox. Программа со стороны ПК компилировалась в Borland C++ 5.5.
Программа для CooCox состоит из одного файла и не использует никаких библиотек (кроме RCC, которая нужна лишь ради функции SystemInit(); в начале программы). Также не используются прерывания, поскольку, на мой взгляд, их использование, затрудняло бы понимание кода и отладку. VID и PID взяты от какого-то STM-овского устройства. При их смене, нужно так-же сменить их и в программе на ПК, поскольку поиск устройства происходит по VID и PID.
Работа рассматриваемой пары программ состоит в следующем. Программа со стороны ПК посылает целое число в контроллер. Контроллер делает инкремент полученного числа и отправляет его назад в ПК. Затем этот цикл повторяется снова и снова. В окне программы выводится полученное число. Дополнительно реализовано управление светодиодом на плате (PC13).
Данная программа не претендует на полное соответствие протоколу USB. В ней реализована обработка ограниченного набора запросов (только тех, что реально попадались при отладке). Как показала практика, набор запросов может различаться на разных компьютерах. Кроме того несмотря на то что удалось добиться работоспособности данной программы, многие вопросы касающиеся USB для меня так и остались непонятными. Этот пример, скорее полуфабрикат, требующий дальнейшей доработки.
Файлы проекта:
drive.google.com/drive/folders/1b3E0YwgRlacK2K2Qykc7OxS11ocNuWig?usp=sharing
  • +8
  • 27 марта 2019, 17:29
  • VVK
  • 1

Глава из «Поваренной книги разработчика аналоговой электроники», от Texas Instruments (TI)

Измерения с использованием датчиков малой мощности: 12-битная, несимметричная схема с одним источником питания на 3,3 В, 1 ksps

Исходные данные к описываемому решению представлены в таблицах 9 и 10



Описание решения
В данном решении усилитель сверхнизкой мощности используется для управления АЦП SAR, уровень энергопотребления которого в активном режиме измеряется в нановаттах. Решение предназначено для использования в системах сбора данных с датчиков с общим уровнем потребления в несколько микроватт. Примерами таких систем являются пассивные инфракрасные датчики, датчики газа и глюкометры. Значения в разделе выбора компонентов могут быть скорректированы в соответствии с требуемой скоростью передачи данных и полосой пропускания усилителя. В предыдущей части рассматривается более сложная версия схемы, где на канал отрицательного напряжения подается небольшое отрицательное напряжение (-0,3 В). Вариант схемы с одним источником питания показывает пониженную производительность, когда выходной сигнал усилителя близок к нулю. Однако в большинстве случаев конфигурация с одним источником питания является более предпочтительной благодаря простоте (рисунок 10, таблица 11).


Рис. 10 Несимметричная схема с одним ИП


Таблица 11. Спецификации упрощенной версии 12-битной несимметричной схемы

Рекомендуем обратить внимание
  • Определите линейный диапазон операционного усилителя на основе характеристик синфазного сигнала, размаха выходного напряжения и линейного коэффициента усиления напряжения. Это описано в разделе выбора компонентов.
  • Используйте конденсаторы COG для минимизации искажений.
  • Используйте пленочные резисторы 0,1% 20 ppm/°C или более высокой точности для минимизации искажений.


В серии обучающих видеороликов TI “Precision Labs – ADCs” показаны методы выбора элементов цепи зарядного сегмента Rfilt и Cfilt. Данные параметры компонентов зависят от полосы пропускания усилителя, частоты дискретизации преобразователя данных и конструкции самого преобразователя. Приведенные здесь значения позволяют получить хорошие показатели установления сигнала и динамические характеристики для усилителя и преобразователя данных в этом примере. В случае изменения дизайна вам понадобится выбрать другой RC-фильтр. Ознакомьтесь с обучающим видео “Введение в выбор компонентов для входных каскадов SAR АЦП”, в котором представлена дополнительная информация по выбору RC-фильтра для получения наилучших характеристик по установлению сигнала и переменному току. Далее...