Глава из «Поваренной книги разработчика аналоговой электроники», от Texas Instruments (TI)

Измерения с использованием датчиков малой мощности: 12-битная, несимметричная схема с одним источником питания на 3,3 В, 1 ksps

Исходные данные к описываемому решению представлены в таблицах 9 и 10



Описание решения
В данном решении усилитель сверхнизкой мощности используется для управления АЦП SAR, уровень энергопотребления которого в активном режиме измеряется в нановаттах. Решение предназначено для использования в системах сбора данных с датчиков с общим уровнем потребления в несколько микроватт. Примерами таких систем являются пассивные инфракрасные датчики, датчики газа и глюкометры. Значения в разделе выбора компонентов могут быть скорректированы в соответствии с требуемой скоростью передачи данных и полосой пропускания усилителя. В предыдущей части рассматривается более сложная версия схемы, где на канал отрицательного напряжения подается небольшое отрицательное напряжение (-0,3 В). Вариант схемы с одним источником питания показывает пониженную производительность, когда выходной сигнал усилителя близок к нулю. Однако в большинстве случаев конфигурация с одним источником питания является более предпочтительной благодаря простоте (рисунок 10, таблица 11).


Рис. 10 Несимметричная схема с одним ИП


Таблица 11. Спецификации упрощенной версии 12-битной несимметричной схемы

Рекомендуем обратить внимание
  • Определите линейный диапазон операционного усилителя на основе характеристик синфазного сигнала, размаха выходного напряжения и линейного коэффициента усиления напряжения. Это описано в разделе выбора компонентов.
  • Используйте конденсаторы COG для минимизации искажений.
  • Используйте пленочные резисторы 0,1% 20 ppm/°C или более высокой точности для минимизации искажений.


В серии обучающих видеороликов TI “Precision Labs – ADCs” показаны методы выбора элементов цепи зарядного сегмента Rfilt и Cfilt. Данные параметры компонентов зависят от полосы пропускания усилителя, частоты дискретизации преобразователя данных и конструкции самого преобразователя. Приведенные здесь значения позволяют получить хорошие показатели установления сигнала и динамические характеристики для усилителя и преобразователя данных в этом примере. В случае изменения дизайна вам понадобится выбрать другой RC-фильтр. Ознакомьтесь с обучающим видео “Введение в выбор компонентов для входных каскадов SAR АЦП”, в котором представлена дополнительная информация по выбору RC-фильтра для получения наилучших характеристик по установлению сигнала и переменному току. Далее...

CP2102 - еще один переходник USB-COM

Универсальный переходник CP2102 USB-COM.


Особенности моего донгла:
  1. «Универсальный» режим питания CP2102-модуля, а также подключаемого MCU модуля:
    USB/Внешнее питание/Сдвоенное питание.
  2. Дополнительные линии DTR/RTS для бутлоадера (проверено на бутявках Arduino/AVR, STM32)
  3. USB-супрессор
  4. Авто-Толерантность RX/TX к уровням сигнала MCU 3.3-5V (ну это заслуга создателей CP2102, привет FT232!)



Читать дальше
  • +5
  • 20 марта 2019, 23:51
  • maxxir
  • 3

LM5176 регулируем входной и выходной ток

В статье LM5176 Силовой блок я обещал рассказать, как можно регулировать выходной/входной ток. Итак: В разрыв выходной цепи установлен шунт R5. Сигнал с него поступает на входы ISNS- и ISNS+ контроллера LM5176. Когда ток меньше порога 50mV на R5 — ограничения тока нет. Когда напряжение на шунте R5 подходит к 50mV, контроллер начинает ограничивать ток.


Изменяем схему, как показано на рисунке:

Читать дальше
  • +5
  • 18 марта 2019, 14:37
  • CreLis
  • 1

Как зарядить автомобильный аккумулятор от другого аккумулятора? Силовой блок на LM5176

Как зарядить автомобильный аккумулятор от другого аккумулятора? Как зарядить дополнительный аккумулятор во время движения автомобиля? Как «прикурить» автомобиль с севшим аккумулятором не превышая допустимый зарядный ток? Как зарядить суперконденсатор?

Всё это можно сделать с помощью силового блока на LM5176. Входное напряжение может меняться от 10 до 16V. Напряжение на выходе можно установить от 14 до 15V. Зарядный ток можно изменять от 0.8А до 15А. Сердцем нашего силового блока является Buck-Boost контроллер LM5176 от компании Texas Instruments. Как устроена схема:

Читать дальше
  • +4
  • 15 марта 2019, 19:53
  • CreLis
  • 1

Моддинг UEFI BIOS, инкапсуляция SLIC таблицы.

  Вкратце поясню, о чем идет речь, что такое SLIC (Software Licensing Description Table) таблица. Таблица SLIC 2.1 нужна для оffline OEM активации Windows 7. Прошивание SLIC-таблицы в BIOS используется для того, чтобы реализовать механизм OEM-активации операционной системы Windows 7 точно так же, как это делают OEM-партнеры Microsoft для активации предустановленных копий Windows без проверки. Данный метод позволяет offline активировать систему при соблюдении трех условий: использование специального OEM-ключа и OEM-сертификата, а также наличие SLIC-таблицы в BIOS компьютера.
Сама по себе процедура прошивки SLIC-таблицы в BIOS вполне законна (Microsoft).
  Таблица SLIC 2.1 состоит из трех частей, кроме заголовка (ACPIHeader) она содержит публичный ключ (PublicKey) и маркер версии Windows 7 (WinMarker), размер таблицы 374 байт. Соответствующие таблице серийный номер и сертификат дожны быть прописаны в Windows 7. Все три составляющие и дают оффлайн активацию.
  Жесткой привязки OEM-ключа к SLIC-таблице и сертификату нет. Ключ привязан только к редакции Windows и позволяет активировать как x86-, так и x64-версии ОС. Файлы-сертификаты и SLIC-таблицы взаимосвязаны, и для успешной активации оба компонента должны быть от одного OEM-партнера.


Читать дальше

Защита от переполюсовки и к.з. зарядного устройства

Надо было разработать портативное зарядное устройство З.У. для зарядки 12V АКБ в полевых условиях. То есть, заряжать один аккумулятор от другого. Причем, зарядный ток — до 15 А. В полевых условиях, в темноте и на морозе перепутать полярность — проще простого. Хотелось сделать так, чтобы при неправильной полярности ничего не перегорало, а просто гудел зуммер.

Самая простая известная схема защиты — с предохранителем.
Если предохранитель сгорит — на морозе его не заменишь!


Кроме того, при неправильной полярности на выход З.У. придёт целых — 0.9 Вольт!



Вот так перегорает предохранитель Tesla 20A в схеме с 2-мя диодами шоттки VS42CTQ030. В течение 25 mS на З.У. приходит — 0.9 Вольт! Осциллограф подключен к точке А

Читать дальше

STM8L Мониторинг питающего напряжения без использования АЦП

Микроконтроллеры STM8L предназначены, прежде всего, для устройств с батарейным питанием. Поэтому часто бывает нужно следить за степенью разряда батарей. Это можно делать при помощи АЦП. Если АЦП полностью занят выполнением основной задачи, то мониторинг питания можно поручить системе Programmable voltage detector (PVD).

Обычно PVD используют для определения порога малого заряда батареи, после чего предпринимают определённые действия, пока питание не пропало совсем.
Мы же будем использовать PVD для отображения текущего заряда батареи на светодиодной шкале в диапазоне 1,7 …. 3,05 V.

Для работы мы возьмём плату STM8L-Discovery с микроконтроллером STM8L152C6T6.
LCD индикатор аккуратно вынимаем и откладываем в сторону.

Для подключения светодиодной шкалы нам понадобится весь порт B. Вместо светодиодной шкалы можно просто взять 8 светодиодов. Катодами мы подключим их к общему проводу, а анодами к выходам PB0 … PB7 порта B через резисторы по 2КОм.


Читать дальше
  • +6
  • 13 марта 2019, 00:09
  • CreLis
  • 1

Программатор SPI и I2C микросхем памяти CH341A Mini Programmer

  Микросхемы памяти серий 24хх (EEPROM), 25хх (Serial Flash) широко используются в электронике. Такие чипы присутствуют в составе практически любой конструкции современной бытовой и промышленной аппаратуры, где есть процессоры и/или микроконтроллеры. Данный программатор имеет возможность работы с обоими типами памяти.


Читать дальше

Очередная багофича HAL

Наткнулся на новый косяк библиотеки HAL в функции HAL_I2S_Transmit. Есть у нее параметр uint16_t Size, который удваивается в случае работы с данными 24 или 32 бита

// stm32f4xx_hal_i2s.c line 537
if((tmp1 == I2S_DATAFORMAT_24B) || (tmp1 == I2S_DATAFORMAT_32B))
{
  hi2s->TxXferSize  = (Size << 1U);
  hi2s->TxXferCount = (Size << 1U);
}
else
{
  hi2s->TxXferSize  = Size;
  hi2s->TxXferCount = Size;
}


Проблема в том, что переменные TxXferSize и TxXferCount имеют тип uint16_t. И если на вход HAL_I2S_Transmit передать размер 0x8000 и более, то после сдвига влево результат превращается в тыкву.

// stm32f4xx_hal_i2s.h line 110
typedef struct __I2S_HandleTypeDef
{
  SPI_TypeDef                *Instance;    /*!< I2S registers base address        */
  I2S_InitTypeDef            Init;         /*!< I2S communication parameters      */
  uint16_t                   *pTxBuffPtr;  /*!< Pointer to I2S Tx transfer buffer */
  __IO uint16_t              TxXferSize;   /*!< I2S Tx transfer size              */
  __IO uint16_t              TxXferCount;  /*!< I2S Tx transfer Counter           */

Улучшение охлаждения на материнской плате ASUS PRIME X370-A.

Доработка радиатора южного моста.

  После покупки материнской платы она провела некоторое время на столе, на открытом стенде. Обратил внимание, что даже в простое температура южного моста непривычно велика, касаясь радиатора, руке сильно горячо (по мониторингу из BIOS 58-60 C). Можно было бы не обращать внимание, ведь инженеры ASUS не стали бы устанавливать мост в критический тепловой режим, чтобы потом менять их по гарантии. Но рассмотрев конструкцию радиатора сразу увидел, что приложив небольшое усилие можно его улучшить, а значит и облегчить тепловой баланс моста.


Читать дальше