Вебинар «Практика разработки IoT-устройств с BlueNRG-LP – «волшебной палочкой» разработчика» (23.03.2021)

Приглашаем 23 марта на бесплатный практический вебинар, где мы покажем примеры разработки IoT-устройств на новой системе-на-кристалле (SoC) BlueNRG-LP от компании STMicroelectronics. BlueNRG-LP является одним из лучших в своем классе BLE-чипом.
На практическом вебинаре будут рассмотрены новые возможности создания прототипов IoT-устройств на BlueNRG-LP с использованием экосистемы и отладочных средств ST, демонстрация настройки и работы в сети BLE-MESH, а также практические примеры работы с микросхемой. Подробнее >>>

Вебинар ST: "Новый BlueNRG-LP с Bluetooth 5.2 и Long Range — волшебная палочка разработчика IoT" (04/02/2021)

Приглашаем 4 февраля на бесплатный вебинар ST о BlueNRG-LP — новом программируемом чипе SoC STMicroelectronics.
На вебинаре будут детально рассмотрены новые возможности, особенности подключения, аппаратные и программные средства для разработки, а также практические примеры работы с микросхемой.

Микросхема BlueNRG-LP соответствует спецификации Bluetooth® версии 5.2.
Поддерживает режим повышенной дальности Long Range, имеет встроенный балун и сверхнизкое потребление в спящем режиме.

Вебинар бесплатный, но требует регистрацию

Вебинар «Практическое использование TrustZone в STM32L5»(10.12.2020)

Приглашаем 10.12.2020 на вебинар, посвященный экосистеме безопасности и возможностях, которые появились у разработчиков благодаря новой технологии TrustZone в микроконтроллерах STM32L5. TrustZone — это набор особых режимов работы Cortex ядра STM32 дающий ряд инструментов для защиты кода и памяти от несанкционированного доступа со стороны исполняемого кода сторонних программ.
Программа рассчитана на технических специалистов и тех, кто уже знаком с основами защиты ПО в STM32. Подробнее >>
  • 0
  • 02 декабря 2020, 17:24
  • DIHALT

Вебинар «STM32L5. Секреты оценки энергопотребления» (05.11.2020)

Компания КОМПЭЛ приглашает 5 ноября принять участие в вебинаре, посвященном первому семейству МК STM32L5 на ядре Cortex-M33. На вебинаре будет рассказано об ошибках при расчете энергопотребления МК с помощью отладки STM32L562E-DK. Отладки STM32L562E-DK будут разыгрываться среди участников. Информация об условиях участия будет озвучена на вебинаре. Подробнее...

Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи 8

Входной узел для обработки сигналов с большими значениями синфазной и дифференциальной составляющих



▌Описание схемы
Такие устройства, как, например, многофункциональные реле, датчики напряжения промышленной сети или системы управления железнодорожного транспорта, как правило, работают с дифференциальными сигналами, амплитуда и абсолютный (относительно общего провода) потенциал которых значительно превосходят диапазон рабочих напряжений АЦП. В этой главе приведен один из вариантов реализации узла, позволяющего оцифровывать подобные сигналы с помощью обычного АЦП последовательного приближения. В предлагаемой схеме (рисунок 39) прецизионный операционный усилитель осуществляет согласование высокоуровневого входного дифференциального сигнала со входом АЦП, причем коэффициент передачи узла на ОУ рассчитан таким образом, чтобы амплитуда сигнала на входе АЦП находилась в пределах ±10 В.


рис. 39
Исходные данные для расчета данной схемы приведены в таблицах 31 и 32, а технические характеристики – в таблице 33. При необходимости параметры элементов могут быть скорректированы под конкретные значения амплитуд синфазной и дифференциальной составляющих входного сигнала, а также – с учетом требований к динамическим характеристикам, частотному диапазону и прочим особенностям конкретного приложения.



Читать дальше

Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи 7

В данной главе описывается, как расширить диапазон входных напряжений SAR АЦП со встроенным аналоговым входным блоком (AFE) и снизить потери точности за счет применения метода двухточечной калибровки.



Схема представленная на рисунке:



расширяет доступный диапазон входных напряжений ADS8598H с собственным диапазоном ±10…± 40 В (таблица 27).



Это позволяет использовать более широкий входной диапазон напряжений без применения дополнительной аналоговой схемы понижения напряжения; вместо этого используется простой делитель напряжения для взаимодействия с AFE АЦП, понижающий напряжение на входе преобразователя. Для устранения возможных ошибок применяется соответствующий метод калибровки.

Также рекомендуем обратиться к статье «Уменьшение влияния внешнего RC-фильтра на погрешности усиления и дрейфа для интегрированного AFE» («Reducing effects of external RC filter circuit on gain and drift error for integrated analog front ends (AFEs): ±10V»), где представлена аналогичная конфигурация с разъяснениями, как оценить вклад дрейфа от внешних компонентов. Расширение диапазона входных напряжений АЦП оказывается полезным в задачах разработки конечного оборудования, включая многофункциональные реле, модули аналоговых сигналов переменного тока и блоки управления для железнодорожного транспорта.

Рекомендуем обратить внимание:
  • Используйте резисторы с малым дрейфом, чтобы снизить ошибки, вызванные температурным дрейфом, например, 50 ppm/°C с допуском 1% или выше. Обратите внимание, что стоимость высокоомных (от 1 Мом и выше) прецизионных резисторов с малым дрейфом может быть сравнительно высокой.
  • Для подобной конфигурации может понадобиться входной фильтр. Установка такого фильтра сразу после мощного входного сопротивления может привести к ошибкам из-за токов утечки конденсатора. Альтернативная схема с фильтрующим конденсатором на входе приведена далее.


Выбор компонентов

Внутреннее сопротивление преобразователя составляет 1 Мом, внешний резистор выбирается на основе требуемого расширенного диапазона входных напряжения (Vin), в данном случае это ±40 В. Такой внешний резистор образует входной делитель напряжения с внутренним сопротивлением устройства, понижая входное напряжение в пределах диапазона входного сигнала АЦП ±10 В.

Преобразуем уравнение делителя напряжения, чтобы найти значение для внешнего резистора. Эта же формула 1 может далее использоваться для расчета ожидаемого значения VinADC из входного напряжения:

Решаем уравнение, находя значение внешнего резистора для желаемого расширенного диапазона входного напряжения. Vin = ±40 В, Rin = 1 МоМ (формула 2):



Ширина входного диапазона напряжений может принимать различные значения, в зависимости от используемого значения внешнего резистора (таблица 28).



Далее в статье некалиброванные измерения и расчет процентной точности, затем двухточечная калибровка с измерением параметров, а также ряд альтернативных схем и их расчет.

Вебинар «Литиевые ХИТы FANSO или что нужно знать инженеру о батарейках» (20.06.2019)

Компания Компэл приглашает вас принять участие в вебинаре, посвященном литиевым батарейкам FANSO.



На вебинаре будет рассказано о параметрах батареек, их зависимости от режима работы и эксплуатации. Будет дана информация о том, на какие параметры следует обращать внимание, выбирая литиевый ХИТ, и как избежать некоторых проблем.

Данное мероприятие будет интересно инженерам-разработчикам, производителям электронных изделий, представителям отдела закупок.

Содержание

  • Почему именно литиевые батарейки?
  • Основные типы и виды литиевых батареек.
  • Производитель FANSO и его продукция. Почему именно FANSO?
  • Параметры литиевых ХИТ, зависимость параметров от режима работы и условий эксплуатации.
  • Пассивация/депассивация. Как снизить последствия пассивации? Эффективность использования батареи.
  • Что даёт связка ХИТ и суперконденсатора?
  • На что обратить внимание при выборе литиевого ХИТ?


Общая информация
Начало: 20 июня 2019 г. в 11:00
Продолжительность: 60 минут
Форма участия: бесплатно, но нужна предварительная регистрация

Регистрация

Работаем с микроконтроллерами STM32F7. Тренинг по STM32F7 от компании STMicroelectronics. Впервые на русском языке

Данная серия публикаций основана на материалах цикла STM32F7 Online Training от компании STMicroelectronics. В статьях представлено описание функциональных блоков и инструментов разработки для семейства микроконтроллеров STM32F7.

Логически материал разбит на 4 главы, охватывающие тематику системной периферии, памяти, безопасности, аналоговой периферии, цифровой периферии, таймеров, экосистемы. Главы не связаны между собой, и читатель может ознакомиться с ними в произвольном порядке:

Часть 1. Системная периферия. Есть описание линейки семейства, с характеристиками каждого чипа. А также расписано устройство контроллера. Ядро, Матрица соединений, контроллеры DMA, прерываний, питания, сброса и тактирования, порты ввода вывода, отладки и прочие. Все очень кратко, в обзорном режиме, но дает наглядное понимание, что там вообще есть и как это использовать.

Часть 2. Память и функции безопасности. Во второй части довольно подробно расписано как общаться с внутренней Flash памятью, как подключить внешнюю память, как управляться с контроллером внешней памяти. Расписана работа Quad SPI контроллера, необходимого для подключения памяти по SPI шине, а также вспомогательных блоков, таких как блок вычисления CRC, Хэшпроцессор, ускоритель шифрования AES и генератор случайных чисел. Описаны способы защиты памяти и механизмы обеспечивающие безопасную работу.

Часть 3. Периферия и таймеры. Довольно подробно расписано про АЦП, ЦАП, CAN, DCMI (интерфейс цифровой камеры), Дельта сигма модулятор, интерфейс DSIHOST — для работы с TFT дисплеями и LTDC контроллер (управление дисплеем по RGB), JPEG-кодек, Ethernet, HDMI, I2C, SPI, USART, USB, SDMMC, SAI и SPDIFRX аудио интерфейсы. Очень жирная глава.

Часть 4. Экосистема. Тут про Cube и отладочные платы под этот процессор.

Вебинар «Уникальный подход MORNSUN к разработке DC/DC-преобразователей. Что на выходе?» (30.05.2019)

Компания Компэл приглашает вас принять участие в вебинаре, где будет рассказано о компании MORNSUN, её продукции и о уникальности подхода к проектированию DC/DC преобразователей.

Основное внимание будет уделено последнему поколению DC/DC преобразователей с фиксированным входом (R3). Будут рассмотрены особенности DC/DC- преобразователей, выполненных по “классической” схеме и преимущества, которые можно получить, используя DC/DC преобразователи последнего поколения R3 от MORNSUN.



Содержание
  • Особый подход компании MORNSUN к проектированию DC/DC преобразователей.
  • Основные критерии выбора DC/DC преобразователей (модульный или преобразователь, выполненный на дискретных компонентах; параметры).
  • Недостатки “классических” DC/DC преобразователей с фиксированным входом. Взаимозависимость параметров.
  • Отличительные особенности DC/DC преобразователей нового поколения (R3):
  • защита от КЗ;
  • функция плавного запуска;
  • защита от перегрева;
  • увеличенная ёмкость нагрузки;
  • высокая эффективность при малой и полной нагрузке;
  • надёжность;
  • стоимость.
  • Совместимость предыдущих поколений преобразователей.
  • Что достигается выбором R3 для своего изделия.

Дополнительные материалы

Схема преобразователя несимметричного сигнала в дифференциальный с использованием дифференциального усилителя

Перевод глав руководства по АЦП от Texas Instruments. Поваренная книга разработчика аналоговых схем: аналого-цифровые преобразователи (впервые на русском языке).


Рисунок 23.



Описание решения
Схема, приведенная на рисунке 23, демонстрирует возможности управления дифференциальным АЦП c преобразованием биполярного несимметричного сигнала в однополярный полностью дифференциальный сигнал (для получения дополнительной информации об этих и других типах сигналов, обратитесь к обучающим материалам TI PrecisionLabs, раздел «Типы входных сигналов SAR АЦП»). По сравнению с несимметричными моделями, полностью дифференциальный АЦП имеет вдвое больший динамический диапазон, что улучшает характеристики преобразователя по переменному току. Многие системы, например, эхолоты, расходомеры и системы управления двигателями, выигрывают от более высокой производительности дифференциального АЦП. В зависимости от конкретных спецификаций и требований конечной системы, соответствующие формулы расчетов и алгоритм выбора компонентов для данной схемы могут варьироваться. Для получения дополнительной информации о подобных схемах, работающих с однополярным входным сигналом, читайте статью «Преобразование несимметричного сигнала в дифференциальный для однополярных сигналов».


Читать дальше